Какая разница между двухядерным и четырехъядерным процессором. На что влияет количество ядер процессора? Многоядерный процессор

Статья постоянно обновляется. Последнее обновление 10.10.2013 р.

На данный момент рынок процессоров развивается настолько динамично, что уследить за всеми новинками и угнаться за прогрессом просто невозможно.
Но нам особо это и не нужно.
Нам, для того, чтобы купить процессор, достаточно знать для чего нужен будет компьютер, какие задачи он будет выполнять, и какую сумму денег мы готовы потратить.

На сегодняшний день заслуженными лидерами рынка процессоров являются две крупнейшие компании Intel и AMD .
Они предлагают широчайший выбор моделей любой ценовой категории. И от такого выбора процессоров разбегаются глаза.
А мы попробуем помочь Вам в этом разобраться, чтоб Вы смогли выбрать и купить производительный процессор и за нормальные деньги.

Начнём с того, что основными показателями производительности у процессора являются:

1) Архитектура процессора. Ведь новая архитектура будет всегда производительней чем предыдущая (несмотря на одинаковую частоту) .
2) Рабочая частота. Чем выше частота процессора тем он производительнее.
3) размер кэш-памяти второго и третьего уровней (L2 и L3);

Ну, а второстепенными показателями:
4) ;
5) технологический процесс;
6) набор инструкций;
и др.

Хотя сейчас находчивые консультанты в магазинах стараются больше акцентировать внимание на количестве ядер, напрямую связывая количество ядер со скоростью обработки данных и производительностью самого компьютера.

Количество ядер?

На сегодняшний день в продаже уже имеются восьми-, шести-, четырёх-, двух- и одноядерные процессоры от AMD , а также шести-, четырёх-, двух-, одноядерные от INTEL .
Но для сегодняшних программ и нужд домашнего геймера вполне достаточно двух- или четырёхъядерного процессора, работающего на высокой частоте.
Процессор с большим количеством ядер (6-8), понадобится лишь для программ кодирования видео и аудио контента, рендеринга изображений и архиваторов.

На данный момент оптимизация в игровой индустрии идет, в основном, на двухъядерные процессоры, только самое новое ПО и игры будут разрабатываться под многопоточные вычисления. Так что если Вы покупаете процессор для игр, то высокочастотный двухъядерный процессор окажется быстрее, чем низкочастотный, но трех- или четырехядерный процессор.

Внимание! У Вас нет прав для просмотра скрытого текста.


И выяснилось, что пока игрокам можно остановиться на современном двухъядерном процессоре, выбрав для себя решение с подходящим соотношением производительности и цены.
При этом стоит учитывать, что чипы Intel к тому же обладают технологией HyperThreading, позволяющей исполнять на каждом ядре две параллельные задачи. Операционная система видит 2х ядерные процессоры как четырёхядерные, а 4-х ядерные как восьмиядерные.
Процессоры с большим количеством ядер могут быть востребованы, в основном, в профессиональных приложениях и кодировании видео.
Восемь/шесть ядер пока не способна полностью загрузить ни одна игра.

Немного подытожим по ядрам.

Для офисного компьютера с головой хватит двухъядерного процессора нижнего ценового диапазона.
Типа Pentium, Celeron от Intel или A4, AthlonII X2 от AMD.

Для домашнего геймерского компьютера можно купить двухъядерный процессор Intel повышенной частоты или четырёхъядерный процессор от AMD.
Типа Core i3, Core i5 частотой от 3 ГГц Intel или A8, A10, Phenom™ II X4 с частотой от 3 ГГц AMD.

Ну, и для "заряженной" рабочей станции или геймерской системы hi-end понадобится хороший четырёхъядерный процессор нового поколения.
Типа Core i5, Core i7 от Intel, так как процессоры AMD очень редко используются в высокопроизводительных машинах.

О процессорах Core i3, Core i5 и Core i7 читаем в статьe:

Производительность процессора?

Как было указано выше, важным параметром является архитектура , на которой основан/выполнен процессор. Чем новее архитектура, тем "шустрее" показывает себя процессор в приложениях и играх. Так как любая последующая архитектура, что Intel, что AMD, будет всегда производительнее предыдущей.
На данный момент актуальны процессоры семейства Haswell (4-ое поколение) и Ivy Bridge (3-е поколение), а также процессоры архитектуры Piledriver семейства Richland, Trinity от AMD .

Также производительность процессора зависит от его рабочей частоты . Чем выше рабочая частота, тем производительней процессор. Актуальная рабочая частота ядер, на данный момент, от 3ГГц и выше.
Но при сравнении между собой процессоров AMD и INTEL при одинаковой тактовой частоте, не означает что они равны по производительности.
Особенности архитектуры позволяют процессорам INTEL показывать более высокую продуктивность даже с меньшей частотой, чем у конкурента.

Примечание: нельзя просто приплюсовать частоту двух ядер. Определяется, как два ядра по XX ГГц.

Ещё одним параметром производительности является размер, объём, сверхбыстрой кэш-памяти второго и третьего уровней L2 и L3 .
Это память с большой скоростью доступа, предназначенная для ускорения обращения к данным, которые обрабатывает процессор.
Чем больше объём кэш памяти, тем выше производительность.

Примечание: Core 2 Duo, Core 2 Quad имеют только L2, Core i5, Core i7 имеют L2+L3, процессоры AMD Athlon™ II X2 имеют только L2, Phenom™ II X4 имеют L2+L3.

У более ранних Core 2 показателем была частота шины FSB процессора. Частота шины, через которую процессор обменивается данными с оперативной памятью.
Чем выше частота FSB шины, тем выше производительность процессора.

Примечание: процессоры Core i3, Core i5 и Core i7 от компании Intel не имеют системной шины FSB, также как и в последних процессорах AMD, передача данных между памятью и процессором происходит напрямую.
Такой метод передачи данных значительно увеличил производительность.
У процессоров семейства Core i7 LGA1366 тоже нет шины FSB, а есть высокоскоростная шина QPI.

Технологический процесс (проектная норма процессора) определяет в первую очередь структурный размер тех элементов, из которых состоит процессор.
В частности, от технологического процесса производства зависит тепловыделение и энергопотребление современных процессоров.
Чем меньше эта величина (технологический процесс), тем меньше тепла выделяет процессор и меньше потребляет энергии.
Более ранние процессоры Core 2 были выполнены по 45- 65-нанометровой технологиям. Более новые Haswell и Ivy Bridge Corei3, Corei5, Core i7 четвёртого и третьего поколения по 22-нм, Sandy Bridge® Corei3, Corei5, Core i7 второго поколения от Intel и Bulldozer от AMD выполнены по технологии 32 нм.

Набор инструкций - это набор допустимых для процессора управляющих кодов и способов адресации данных. Система таких команд жестко связана с конкретным типом процессора.
Чем шире набор инструкций у процессора, тем лучше и быстрее обрабатываются данные.

Боксовая комплектация (BOX) или трей (Tray/ОЕМ)?

Боксовая (BOX) комплектация представляет собой комплект:
- сам процессор;
- кулер с нанесённой термопастой (радиатор+вентилятор);
- инструкция и документация.

Отличительной особенностью BOX-комплектации является расширенная гарантия на процессор - 3 года.
BOX-процессоры лучше брать для офисных и домашних мультимедийных систем, в которых не планируется смена охлаждения на более эффективное.
Но BOX-процессоры стоят немного дороже, чем такие же TRAY.

Трей-процессор (Tray/OEM) представляет собой только процессор. Нет кулера и документов.

В отличии от BOX гарантия на Tray-процессор всего лишь 1 год.
Tray/OEM процессоры используют фирмы-сборщики готовых брендовых компьютеров. А также энтузиасты геймеры-оверклокеры, которым не принципиальны гарантия (после разгона гарантия с изделия снимается) и родное охлаждение, т.к. на процессор сразу устанавливается более эффективное.
Tray-процессоры стоят немного дешевле.

Intel или AMD?

На эту тему всегда шли ожесточенный споры на форумах и конференциях. Вообще, эта тема является вечной. Сторонники Intel будут утверждать, что эти процессоры во всех отношениях лучше, чем у конкурента. И наоборот. Сам же я являюсь приверженцем Intel.

Если сравнить одинаковые по частоте и количеству ядер процессоры двух этих компаний, то процессоры Intel будут более производительнее. Однако в ценовом диапазоне преимущество у AMD.

Если вы собираете себе бюджетную систему на минимальные финансы, то процессоры AMD - ваш выбор. Если же у вас будет игровая или производительная вычислительная система, то выбор стоит сделать в пользу Intel.

Есть ещё один момент, материнские платы для процессоров Intel также стоят дороже, а платформа AMD соответственно дешевле. Выбирая процессор для своего ПК, нужно определится с начальными приоритетами, собрать недорогую систему на AMD или более производительную, но подороже на базе Intel.

В ассортименте каждой компании есть много моделей процессоров, начиная от бюджетных, например, Celeron у Intel и Sempron/Duron у AMD, до топовых Core i7 у Intel, A10 у AMD.

В разных приложениях результаты довольно различны, так в некоторых победу одерживают процессоры AMD, в других - Intel, поэтому выбор всегда остается за пользователем.

Просто у AMD есть одно неоспоримое преимущество - это цена. И один недостаток - процессоры от AMD не столь конструктивно надёжны и немного горячее.

У Intel тоже есть преимущество - процессоры более конструктивно надёжны и стабильны, а также менее горячие. Недостаток - цена выше, чем у конкурента.

Судя по нынешним тестам игровая производительность процессоров между INTEL и AMD имеет такой вид:




Подведём итоги:

Значит, чтобы купить максимально производительный игровой процессор для компьютера, нужно выбрать процессор с:
1) наиболее новой архитектурой;
2) максимальной частотой ядра (желательно от 3 ГГц и выше);
3) максимальным размером кэша L2/L3;
4) большим набором доступных инструкций;
5) минимальным технологическим процессом изготовления.

После прочтения этой статьи, я думаю, каждый сможет определится с тем, какой процессор купить ему для своего компьютера.
Купить процессоры за большие деньги можно всегда, но если на компьютере будут выполняться только бытовые задачи, не требующие большой вычислительной мощности - деньги будут потрачены впустую.

Первые компьютерные процессоры с несколькими ядрами появились на потребительском рынке ещё в середине двухтысячных, но множество пользователей до сих пор не совсем понимает — что это такое, многоядерные процессоры, и как разобраться в их характеристиках.

Видео-формат статьи «Вся правда о многоядерных процессорах»

Простое объяснение вопроса «что такое процессор»

Микропроцессор — одно из главных устройств в компьютере. Это сухое официальное название чаще сокращают до просто «процессор») . Процессор — микросхема, по площади сравнимая со спичечным коробком . Если угодно, процессор — это как мотор в автомобиле. Важнейшая часть, но совсем не единственная. Есть у машины ещё и колёса, и кузов, и проигрыватель с фарами. Но именно процессор (как и мотор автомобиля) определяет мощность «машины».

Многие называют процессором системный блок — «ящик», внутри которого находятся все компоненты ПК, но это в корне неверно. Системный блок — это корпус компьютера вместе со всеми составляющими частями — жёстким диском, оперативной памятью и многими другими деталями.

Функция процессора — вычисления . Не столь важно, какие именно. Дело в том, что вся работа компьютера завязана исключительно на арифметических вычислениях. Сложение, умножение, вычитание и прочая алгебра — этим всем занимается микросхема под названием «процессор». А результаты таких вычислений выводятся на экран в виде игры, вордовского файла или просто рабочего стола.

Главная часть компьютера, которая занимается вычислениями — вот, что такое процессор .

Что такое процессорное ядро и многоядерность

Испокон процессорных «веков» эти микросхемы были одноядерными. Ядро — это, фактически, сам процессор. Его основная и главная часть. Есть у процессоров и другие части — скажем, «ножки»-контакты, микроскопическая «электропроводка» — но именно тот блок, который отвечает за вычисления, называется ядром процессора . Когда процессоры стали совсем небольшими, то инженеры решили совместить внутри одного процессорного «корпуса» сразу несколько ядер.

Если представить процессор в виде квартиры, то ядро — это крупная комната в такой квартире. Однокомнатная квартира — это одно процессорное ядро (крупная комната-зал), кухня, санузел, коридор… Двухкомнатная квартира — это уже как два процессорных ядра вместе с прочими комнатами. Бывают и трёх-, и четырёх, и даже 12-комнатные квартиры. Также и в случае с процессорами: внутри одного кристалла-«квартиры» может быть несколько ядер-«комнат».

Многоядерность — это разделение одного процессора на несколько одинаковых функциональных блоков. Количество блоков — это число ядер внутри одного процессора.

Разновидности многоядерных процессоров

Бытует заблуждение: «чем больше ядер у процессора — тем лучше». Именно так стараются представить дело маркетологи, которым платят за создание такого рода заблуждений. Их задача — продавать дешёвые процессоры, притом — подороже и в огромных количествах. Но на самом деле количество ядер — далеко не главная характеристика процессоров.

Вернёмся к аналогии процессоров и квартир. Двухкомнатная квартира дороже, удобнее и престижнее однокомнатной. Но только если эти квартиры находятся в одном районе, оборудованы одинаково, да и ремонт у них схожий. Существуют слабенькие четырёхядерные (а то и 6-ядерные) процессоры, которые значительно слабее двухядерных. Но поверить в это сложно: ещё бы, магия крупных чисел 4 или 6 против «какой-то» двойки. Однако именно так и бывает весьма и весьма часто. Вроде как та же четырёхкомнатная квартира, но в убитом состоянии, без ремонта, в совершенно отдалённом районе — да ещё и по цене шикарной «двушки» в самом центре.

Сколько бывает ядер внутри процессора?

Для персональных компьютеров и ноутбуков одноядерные процессоры толком не выпускаются уже несколько лет, а встретить их в продаже — большая редкость. Число ядер начинается с двух. Четыре ядра — как правило, это более дорогие процессоры, но отдача от них присутствует. Существуют также 6-ядерные процессоры, невероятно дорогие и гораздо менее полезные в практическом плане. Мало какие задачи способны получить прирост производительности на этих монструозных кристаллах.

Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

Теперь вы знаете, что у процессоров бывает 1, 2, 3, 4, 6 и 12 ядер. Одноядерные и 12-ядерные процессоры — большая редкость. Трёхядерные процессоры — дело прошлого. Шестиядерные процессоры либо очень дороги (Intel), либо не такие уж сильные (AMD), чтобы переплачивать за число. 2 и 4 ядра — самые распространённые и практичные устройства, от самых слабых до весьма мощных.

Частота многоядерных процессоров

Одна из характеристик компьютерных процессоров — их частота. Те самые мегагерцы (а чаще — гигагерцы). Частота — важная характеристика, но далеко не единственная . Да, пожалуй, ещё и не самая главная. К примеру, двухядерный процессор с частотой 2 гигагерца — более мощное предложение, чем его одноядерный собрат с частотой 3 гигагерца.

Совсем неверно считать, что частота процессора равна частоте его ядер, умноженной на количество ядер. Если проще, то у 2-ядерного процессора с частотой ядра 2 ГГц общая частота ни в коем случае не равна 4 гигагерцам! Даже понятия «общая частота» не существует. В данном случае, частота процессора равна именно 2 ГГц. Никаких умножений, сложений или других операций.

И вновь «превратим» процессоры в квартиры. Если высота потолков в каждой комнате — 3 метра, то общая высота квартиры останется такой же — всё те же три метра, и ни сантиметром выше. Сколько бы комнат не было в такой квартире, высота этих комнат не изменяется. Так же и тактовая частота процессорных ядер . Она не складывается и не умножается.

Виртуальная многоядерность, или Hyper-Threading

Существуют ещё и виртуальные процессорные ядра . Технология Hyper-Threading в процессорах производства Intel заставляет компьютер «думать», что внутри двухядерного процессора на самом деле 4 ядра. Очень похоже на то, как один-единственный жёсткий диск делится на несколько логических — локальные диски C, D, E и так далее.

Hyper- Threading — весьма полезная в ряде задач технология . Иногда бывает так, что ядро процессора задействовано лишь наполовину, а остальные транзисторы в его составе маются без дела. Инженеры придумали способ заставить работать и этих «бездельников», разделив каждое физическое процессорное ядро на две «виртуальные» части. Как если бы достаточно крупную комнату разделили перегородкой на две.

Имеет ли практический смысл такая уловка с виртуальными ядрами ? Чаще всего — да, хотя всё зависит от конкретных задач. Вроде, и комнат стало больше (а главное — они используются рациональнее), но площадь помещения не изменилась. В офисах такие перегородки невероятно полезны, в некоторых жилых квартирах — тоже. В других случаях в перегораживании помещения (разделении ядра процессора на два виртуальных) смысла нет вообще.

Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper- Threading . В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

Процессоры Core i3 — типичные «середнячки», как по цене, так и по производительности. У них два ядра и никакого намёка на Hyper-Threading. Итого получается, что у Core i3 всего два вычислительных потока. Это же относится и к откровенно бюджетным кристаллам Pentium и Celeron . Два ядра, «гипе-трединг» отсутствует = два потока.

Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

Все современные процессоры достаточно производительны для обычных задач . Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

Для игр следует обратить внимание на процессоры Core i3 или i5 . Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника . Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

Есть ли польза от многоядерных процессоров?

Безусловно, да. Одновременно компьютер занимается несколькими задачами — хотя бы работа Windows (кстати, это сотни разных задач) и, в тот же момент, проигрывание фильма. Проигрывание музыки и просмотр интернета. Работа текстового редактора и включённая музыка. Два процессорных ядра — а это, по сути, два процессора, справятся с разными задачами быстрее одного. Два ядра сделают это несколько быстрее. Четыре — ещё быстрее, чем два.

В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

Поэтому укоренившийся миф о том, что, якобы, программы не могут использовать несколько ядер — устаревшая информация. Когда-то действительно было так, сегодня ситуация улучшилась кардинально. Преимущества от нескольких ядер неоспоримы, это факт.

Когда меньше ядер у процессора — лучше

Не следует покупать процессор по неверной формуле «чем больше ядер — тем лучше». Это не так. Во-первых, 4, 6 и 8-ядерные процессоры ощутимо дороже своих двухядерных собратьев. Значительная прибавка в цене далеко не всегда оправдана с точки зрения в производительности. К примеру, если 8-ядерник окажется лишь на 10% быстрее CPU с меньшим количеством ядер, но будет в 2 раза дороже, то такую покупку сложно оправдать.

Во-вторых, чем больше ядер у процессора, тем он «прожорливее» с точки зрения энергопотребления. Нет никакого смысла покупать гораздо более дорогой ноутбук с 4-ядерным (8-поточным) Core i7, если на этом ноутбуке будут обрабатываться лишь текстовые файлы, просматриваться интернет и так далее. Никакой разницы с двухядерником (4 потока) Core i5 не будет, да и классический Core i3 лишь с двумя вычислительными потоками не уступит более именитому «коллеге». А от батарейки такой мощный ноутбук проработает гораздо меньше, чем экономичный и нетребовательный Core i3.

Многоядерные процессоры в мобильных телефонах и планшетах

Мода на несколько вычислительных ядер внутри одного процессора касается и мобильных аппаратов. Смартфоны вместе с планшетами с большим количеством ядер почти никогда не используют все возможности своих микропроцессоров. Двухядерные мобильные компьютеры иногда действительно работают чуть быстрее, но 4, а тем более 8 ядер — откровеннейший перебор. Аккумулятор расходуется совершенно безбожно, а мощные вычислительные устройства попросту простаивают без дела. Вывод — многоядерные процессоры в телефонах, смартфонах и планшетах — лишь дань маркетингу, а не насущная необходимость. Компьютеры — более требовательные устройства, чем телефоны. Два процессорных ядра им действительно нужны. Четыре — не помешают. 6 и 8 — излишество в обычных задачах и даже в играх.

Как выбрать многоядерный процессор и не ошибиться?

Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.

Заметим, что таблица основана на процессорах образца 2012-2014 годов. Более старые образцы имеют другие характеристики. Также мы не стали упоминать редкие варианты CPU, например — одноядерный Celeron (бывают и такие даже сегодня, но это нетипичный вариант, который почти не представлен на рынке). Не следует выбирать процессоры исключительно по количеству ядер внутри них — есть и другие, более важные характеристики. Таблица лишь облегчит выбор многоядерного процессора, но конкретную модель (а их десятки в каждом классе) следует покупать только после тщательного ознакомления с их параметрами: частотой, тепловыделением, поколением, размером кэша и другими характеристиками.

Процессор Количество ядер Вычислительные потоки Типичная область применения
Atom 1-2 1-4 Маломощные компьютеры и нетбуки. Задача процессоров Atom — минимальное энергопотребление. Производительность у них минимальна.
Celeron 2 2 Самые дешёвые процессоры для настольных ПК и ноутбуков. Производительности достаточно для офисных задач, но это совсем не игровые CPU.
Pentium 2 2 Столь же недорогие и малопроизводительные процессоры Intel, как и Celeron. Отличный выбор для офисных компьютеров. Pentium оснащаются чуть более ёмким кэшем, и, иногда, слегка повышенными характеристиками по сравнению с Celeron
Core i3 2 4 Два достаточно мощных ядра, каждое из которых разделено на два виртуальных «процессора» (Hyper-Threading). Это уже довольно мощные CPU при не слишком высоких ценах. Хороший выбор для домашнего или мощного офисного компьютера без особой требовательности к производительности.
Core i5 4 4 Полноценные 4-ядерники Core i5 — довольно дорогие процессоры. Их производительности не хватает лишь в самых требовательных задачах.
Core i7 4-6 8-12 Самые мощные, но особенно дорогие процессоры Intel. Как правило, редко оказываются быстрее Core i5, и лишь в некоторых программах. Альтернатив им просто нет.

Краткий итог статьи «Вся правда о многоядерных процессорах». Вместо конспекта

  • Ядро процессора — его составная часть. Фактически, самостоятельный процессор внутри корпуса. Двухядерный процессор — два процессора внутри одного.
  • Многоядерность сравнима с количеством комнат внутри квартиры. Двухкомнатные лучше однокомнатных, но лишь при прочих равных характеристиках (расположение квартиры, состояние, площадь, высота потолков).
  • Утверждение о том, что чем больше ядер у процессора, тем он лучше — маркетинговая уловка, совершенно неверное правило. Квартиру ведь выбирают далеко не только по количеству комнат, но и по её расположению, ремонту и другим параметрам. Это же касается и нескольких ядер внутри процессора.
  • Существует «виртуальная» многоядерность — технология Hyper-Threading. Благодаря этой технологии, каждое «физическое» ядро разделяется на два «виртуальных». Получается, что у 2-ядерного процессора с Hyper-Threading лишь два настоящих ядра, но эти процессоры одновременно обрабатывают 4 вычислительных потока. Это действительно полезная «фишка», но 4-поточный процессор нельзя считать четырёхядерным.
  • Для настольных процессоров Intel: Celeron — 2 ядра и 2 потока. Pentium — 2 ядра, 2 потока. Core i3 — 2 ядра, 4 потока. Core i5 — 4 ядра, 4 потока. Core i7 — 4 ядра, 8 потоков. Ноутбучные (мобильные) CPU Intel имеют иное количество ядер/потоков.
  • Для мобильных компьютеров часто важнее экономичность в энергопотреблении (на практике — время работы от батареи), чем количество ядер.

Многоя́дерный проце́ссор - центральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

Среди многоядерных процессоров к данному моменту можно выделить

*процессоры, предназначенные в основном для встраиваемых и мобильных приложений, в которых большое внимание разработчиков было уделено средствам и методам снижения энергопотребления (SEAforth (SEAforth24, seaforth40), Tile (Tile36, Tile64, Tile64pro), AsAP-II, CSX700);

*процессоры для вычислительных или графических станций, где вопросы энергопотребления не столь критичны (графические процессоры, например, процессоры серии g80 от NVIDIA, проект Larrabee от Intel, отчасти сюда можно отнести и процессор Cell от IBM, хотя количество вычислительных ядер у него относительно невысоко);

* процессоры т.н. мейнстрима - предназначенные для серверных, рабочих станций и персональных компьютеров (AMD, Intel, Sun);

  • Количество ядер (Количество ядер. Ядро (core) – кристалл кремния площадью примерно один квадратный сантиметр, на котором посредством микроскопических логических элементов реализована принципиальная схема процессора, так называемая архитектура. Каждое ядро воспринимается системой как отдельный, самостоятельный процессоров, со всем необходимым набором функций.)

Тактовая частота (такт - элементарная операция в секунду, которую может выполнить процессор. Следовательно, количество тактов - это показатель, сколько операций в секунду времени способен обработать процессор. Единицей измерения этого параметра являются гигагерцы ГГц.)

Кеш-память (память, непосредственно встроенная в процессор, и используемая для хранения и обращения к часто используемым данным, называется кеш-память. Она делиться на несколько уровней - L1, L2 и L3. Вышестоящий уровень кеш-памяти имеет больший объем, но менее скоростной доступ к данным.)

Разрядность (определяет количество информации, которой может обменяться процессор с оперативной памятью за один такт. Параметр этот измеряется в битах. Параметр разрядности влияет на объем возможной оперативной памяти - 32-х битный процессор может работать только с 4 Гб оперативной памяти.)

Производительность

Потребляемая мощность

Размеры

Стоимость

Классы задач, на которые рассчитаны

Сравнительные характеристики производительности процессоров, потребляемой мощности и скоростей обмена данными представлены в таблицах

(Мфлопс - миллион операций с плавающей точкой в секунду)

Немалый вклад в общую производительность процессора и эффективность его работы вкладывает и структура межъядерных связей и организация подсистемы памяти, в частности кэш-памяти


Процессор CSX700

Архитектура процессора CSX700 была разработана для решения так называемой проблемы массо-габаритных показателей и потребляемой мощности (Size, Weight and Power (SWAP)), которая, как правило, является основной для встраиваемых высокопроизводительных приложений. Путем интегрирования процессоров, системных интерфейсов и встроенной памяти с коррекцией ошибок, CSX700 представляет собой достаточно экономичное, надежное и производительное решение, отвечающее требованиям современных приложений.

Архитектура процессора оптимизирована для работы с применением массового параллелизма данных и спроектирована с высокой степенью эффективности и надежности. Архитектура нацелена на интеллектуальную обработку сигналов и обработку изображений во временной и частотной областях.

Кристалл CSX700 содержит 192 высокопроизводительных процессорных ядра, встроенную буферную память размером 256 кбайт (два банка по 128 кбайт), кэш данных и кэш команд, ECC-защиту внутренней и внешней памяти, встроенный контроллер прямого доступа в память. Для обеспечения накристаль-ной и межкристальной сети используется технология ClearConnect NoC (рис. 11).

Процессор состоит из двух относительно независимых модулей MTAP (MultiThreaded Array Processor - многопотоковый процессорный массив), содержащих кэши инструкций, данных, блоки управления процессорными элементами, и набор из 96 вычислительных ядер (рис. 12).

Рис. 12. Структура MTAP-блока

Каждое ядро имеет двойной блок вычислений с плавающей точкой (сложение, умножение, деление, вычисление квадратного корня, поддерживаются числа одинарной и двойной точности), 6 кбайт высокопроизводительной оперативной памяти, 128-байтный регистровый файл. Поддерживается 64-битное виртуальное адресное пространство и 48-битное реальное.

Технические характеристики процессора:

тактовая частота ядер 250 MГц;

96 ГФлоп для данных двойной или одинарной точности;

поддерживает 75 ГФлоп при тесте перемножения матриц двойной точности (DGEMM);

производительность целочисленных операций 48 ШАОс;

рассеиваемая мощность 9 Вт;

пропускная способность внутренних шин памяти 192 Гбайт/с;

две внешние шины памяти 4 Гбайт/с;

скорость обмена данными между отдельными процессорами 4 Гбайт/с;

интерфейсы PCIe, 2·DDR2 DRAM (64 бита).

Разработанный для систем с низким энергопотреблением, данный процессор работает на относительно низкой тактовой частоте и имеет механизм управления частотой, который позволяет регулировать производительность приложений в условиях определенного энергопотребления и теплового окружения.

CSX700 поддерживается профессиональной средой разработки (SDK) на основе технологии Eclipse с визуальными средствами отладки приложений, базирующейся на оптимизированном компиляторе ANSI C с расширениями для параллельного программирования. В дополнение к стандартной библиотеке С идет набор оптимизированных библиотек с такими функциями, как БПФ, BLAS, LAPACK и др.

Современные процессоры Intel и AMD

Современный рынок процессоров делят два главных конкурента – Intel и AMD.

Процессоры от компании Intel, сегодня считаются самыми производительными, благодаря семейству Core i7 Extreme Edition. В зависимости от модели они могут иметь до 6 ядер одновременно, тактовую частоту до 3300 МГц и до 15 Мб кэш памяти L3. Самые популярные ядра в сегменте настольных процессоров создаются на основе Intel - Ivy Bridge и Sandy Bridge.

В процессорах компании Intel применяются фирменные технологии собственной разработки для повышения эффективности работы системы.

1. Hyper Threading - За счет этой технологии, каждое физическое ядро процессора способно обрабатывать по два потока вычислений одновременно, получается, что число логических ядер фактически удваивается.

2. Turbo Boost - Позволяет пользователю совершить автоматический разгон процессора, не превышая при этом максимально допустимый предел рабочей температуры ядер.

3. Intel QuickPath Interconnect (QPI) - Кольцевая шина QPI соединяет все компоненты процессора, за счет этого сводятся к минимуму все возможные задержки при обмене информацией.

4. Visualization Technology - Аппаратная поддержка решений виртуализации.

5. Intel Execute Disable Bit - Практически антивирусная программа, она обеспечивает аппаратную защиту от возможных вирусных атак, в основе которых лежит технология переполнения буфера.

6. Intel SpeedStep-Инструмент позволяющий изменять уровень напряжения и частоты в зависимости от создаваемой нагрузки на процессор.

Core i7 – на данный момент топовая линия компании

Core i5 – отличаются высокой производительностью

Core i3 – невысокая цена, высокая/средняя производительность

Самые быстрые процессоры фирмы AMD все же медленнее, чем самые быстрые процессоры Intel (данные на ноябрь 2010). Но благодаря своему хорошему соотношению цены и качества, процессоры AMD, в основном для настольных ПК, являются прекрасной альтернативой процессорам Intel.

Для процессоров Athlon II и Phenom II важным является не только тактовая частота, но и количество ядер процессора. Athlon II и Phenom II в зависимости от модели могут иметь два три или четыре ядра. Модель с шестью ядрами – только серия Highend Phenom II.

Большинство современных процессоров созданных компанией AMD по умолчанию поддерживают следующие технологии:

1. AMD Turbo CORE - Эта технология призвана автоматически регулировать производительность всех ядер процессора, за счет управляемого разгона (подобная технология у компании Intel имеет название TurboBoost).

2. AVX (Advanced Vector Extensions), ХОР и FMA4 - Инструмент, имеющий расширенный набор команд, специально созданных для работы с числами с плавающей точкой. Однозначно полезный инструментарий.

3. AES (Advanced Encryption Standard) - В программных приложениях использующих шифрование данных, повышает производительность.

4. AMD Visualization (AMD-V) - Эта технология виртуализации, помогает обеспечить разделение ресурсов одного компьютера между несколькими виртуальными машинами.

5. AMD PowcrNow! - Технология управления питанием. Она помогают пользователю добиться повышения производительности, за счет динамической активации и деактивации части процессора.

6. NX Bit - Уникальная антивирусная технология, помогающая предотвратить инфицирование персонального компьютера определенными видами вредоносных программ.

Использование в ГИС

Геоинформационные системы - многофункциональные средства анализа сведенных воедино табличных, текстовых и картографических данных, демографической, статистической, земельной, муниципальной, адресной и другой информации. Многоядерные процессоры необходимы для быстрой обработки различных видов информации, так как они значительно ускоряют и распределяют работу программ.

ВЫВОД

Переход к многоядерным процессорам становится основным направлением повышения производительности. На данный момент самым распространенным считается 4-х и 6-и ядерные процессоры. Каждое ядро воспринимается системой как отдельный, самостоятельный процессоров, со всем необходимым набором функций. Технология многоядерных процессоров, позволила распараллелить операции вычисления, вследствие чего повысился показатель быстродействия ПК.

http://www.intuit.ru/department/hardware/mcoreproc/15/

http://kit-e.ru/articles/build_in_systems/2010_2_92.php

http://softrew.ru/instructions/266-sovremennye-processory.html

http://it-notes.info/centralnyj-processor/

http://www.mediamarkt.ru/mp/article/AMD,847020.html

Преимущества многоядерных процессоров

Возможность распределять работу программ, например, основных задач приложений и фоновых задач операционной системы, по нескольким ядрам;

Увеличение скорости работы программ;

Процессы, требующие интенсивных вычислений, протекают намного быстрее;

Более эффективное использование требовательных к вычислительным ресурсам мультимедийных приложений (например, видеоредакторов);

Снижение энергопотребления;

Работа пользователя ПК становится более комфортной;

Но с покорением новых вершин показателей частоты, наращивать её стало тяжелее, так как это сказывалось на увеличении TDP процессоров. Поэтому разработчики стали растить процессоры в ширину, а именно добавлять ядра, так и возникло понятие многоядерности.

Ещё буквально 6-7 лет назад, о многоядерности процессоров практически не было слышно. Нет, многоядерные процессоры от той же компании IBM существовали и ранее, но появление первого двухъядерного процессора для настольных компьютеров , состоялось лишь в 2005 году, и назывался данный процессор Pentium D. Также, в 2005 году был выпущен двухъядерник Opteron от AMD, но для серверных систем.

В данной статье, мы не будем подробно вникать в исторические факты, а будем обсуждать современные многоядерные процессоры как одну из характеристик CPU. А главное – нам нужно разобраться с тем, что же даёт эта многоядерность в плане производительности для процессора и для нас с вами.

Увеличение производительности за счёт многоядерности

Принцип увеличения производительности процессора за счёт нескольких ядер, заключается в разбиении выполнения потоков (различных задач) на несколько ядер. Обобщая, можно сказать, что практически каждый процесс, запущенный у вас в системе, имеет несколько потоков.

Сразу оговорюсь, что операционная система может виртуально создать для себя множество потоков и выполнять это все как бы одновременно, пусть даже физически процессор и одноядерный. Этот принцип реализует ту самую многозадачность Windows (к примеру, одновременное прослушивание музыки и набор текста).


Возьмём для примера антивирусную программу. Один поток у нас будет сканирование компьютера, другой – обновление антивирусной базы (мы всё очень упростили, дабы понять общую концепцию).

И рассмотрим, что же будет в двух разных случаях:

а) Процессор одноядерный. Так как два потока выполняются у нас одновременно, то нужно создать для пользователя (визуально) эту самую одновременность выполнения. Операционная система, делает хитро: происходит переключение между выполнением этих двух потоков (эти переключения мгновенны и время идет в миллисекундах). То есть, система немного «повыполняла» обновление, потом резко переключилась на сканирование, потом назад на обновление. Таким образом, для нас с вами создается впечатление одновременного выполнения этих двух задач. Но что же теряется? Конечно же, производительность. Поэтому давайте рассмотрим второй вариант.

б) Процессор многоядерный. В данном случае этого переключения не будет. Система четко будет посылать каждый поток на отдельное ядро, что в результате позволит нам избавиться от губительного для производительности переключения с потока на поток (идеализируем ситуацию). Два потока выполняются одновременно, в этом и заключается принцип многоядерности и многопоточности. В конечном итоге, мы намного быстрее выполним сканирование и обновление на многоядерном процессоре, нежели на одноядерном. Но тут есть загвоздочка – не все программы поддерживают многоядерность. Не каждая программа может быть оптимизирована таким образом. И все происходит далеко не так идеально, насколько мы описали. Но с каждым днём разработчики создают всё больше и больше программ, у которых прекрасно оптимизирован код, под выполнение на многоядерных процессорах.

Нужны ли многоядерные процессоры? Повседневная резонность

При выборе процессора для компьютера (а именно при размышлении о количестве ядер), следует определить основные виды задач, которые он будет выполнять.

Для улучшения знаний в сфере компьютерного железа, можете ознакомится с материалом про сокеты процессоров .

Точкой старта можно назвать двухъядерные процессоры, так как нет смысла возвращаться к одноядерным решениям. Но и двухъядерные процессоры бывают разные. Это может быть не «самый» свежий Celeron, а может быть Core i3 на Ivy Bridge, точно так же и у АМД – Sempron или Phenom II. Естественно, за счёт других показателей производительность у них будет очень отличаться, поэтому нужно смотреть на всё комплексно и сопоставлять многоядерность с другими характеристиками процессоров .

К примеру, у Core i3 на Ivy Bridge, в наличии имеется технология Hyper-Treading, что позволяет обрабатывать 4 потока одновременно (операционная система видит 4 логических ядра, вместо 2-ух физических). А тот же Celeron таким не похвастается.

Но вернемся непосредственно к размышлениям относительно требуемых задач. Если компьютер необходим для офисной работы и серфинга в интернете, то ему с головой хватит двухъядерного процессора.

Когда речь заходит об игровой производительности, то здесь, чтобы комфортно чувствовать себя в большинстве игр необходимо 4 ядра и более. Но тут всплывает та самая загвоздочка: далеко не все игры обладают оптимизированным кодом под 4-ех ядерные процессоры, а если и оптимизированы, то не так эффективно, как бы этого хотелось. Но, в принципе, для игр сейчас оптимальным решением является именно 4-ых ядерный процессор.


На сегодняшний день, те же 8-ми ядерные процессоры AMD , для игр избыточны, избыточно именно количество ядер, а вот производительность не дотягивает, но у них есть другие преимущества. Эти самые 8 ядер, очень сильно помогут в задачах, где необходима мощная работа с качественной многопоточной нагрузкой. К таковой можно отнести, например рендеринг (просчёт) видео, или же серверные вычисления. Поэтому для таких задач необходимы 6, 8 и более ядер. Да и в скором времени игры смогут качественно грузить 8 и больше ядер, так что в перспективе, всё очень радужно.

Не стоит забывать о том, что остается масса задач, создающих однопоточную нагрузку. И стоит задать себе вопрос: нужен мне этот 8-ми ядерник или нет?

Подводя небольшие итоги, еще раз отмечу, что преимущества многоядерности проявляются при «увесистой» вычислительной многопоточной работе. И если вы не играете в игры с заоблачными требованиями и не занимаетесь специфическими видами работ требующих хорошей вычислительной мощи, то тратиться на дорогие многоядерные процессоры, просто нет смысла (

Модуль поиска не установлен.

Одноядерный или двухъядерный?

Виктор Куц

Самым значимым событием последнего времени в области микропроцессоров стало появление в широком доступе CPU, оснащенных двумя вычислительными ядрами. Переход на двухъядерную архитектуру обусловлен тем, что традиционные методы по увеличению производительности процессоров полностью исчерпали себя - процесс наращивания их тактовых частот в последнее время застопорился.

К примеру, в последний год перед появлением двухъядерных процессоров компания Intel смогла увеличить частоты своих CPU на 400 МГц, а AMD и того меньше - всего лишь на 200 МГц. Другие же методы повышения производительности, такие как увеличение скорости шины и размера кэш-памяти, также утратили былую эффективность. Таким образом, внедрение двухъядерных процессоров, обладающих двумя процессорными ядрами в одном чипе и разделяющими между собой нагрузку, в настоящее время оказалось наиболее логичным шагом на сложном и тернистом пути наращивания производительности современных компьютеров.

Что же представляет собой двухъядерный процессор? В принципе, двухъядерный процессор представляет собой SMP-систему (Symmetric MultiProcessing - симметричная многопроцессорная обработка; термин, обозначающий систему с несколькими равноправными процессорами) и по сути своей не отличается от обыкновенной двухпроцессорной системы, состоящей из двух независимых процессоров. Таким образом, мы получаем все преимущества двухпроцессорных систем без необходимости использования сложных и очень дорогих двухпроцессорных материнских плат.

До этого компанией Intel уже была произведена попытка распараллелить выполняемые инструкции - речь идет о технологии HyperThreading, обеспечивающей разделение ресурсов одного "физического" процессора (кэш, конвейер, исполнительные устройства) между двумя "виртуальными" процессорами. Прирост производительности (в отдельных, оптимизированных для HyperThreading приложениях) при этом составлял примерно 10-20%. Тогда как полноценный двухъядерный процессор, включающий в себя два "честных" физических ядра, обеспечивает прирост производительности системы на все 80-90% и даже больше (естественно, при полном задействовании возможностей обоих его ядер).

Главным инициатором в продвижении двухъядерных процессоров выступила компания AMD, которая в начале 2005 года выпустила первый серверный двухъядерный процессор Opteron. Что касается настольных процессоров, то здесь инициативу перехватила компания Intel, примерно в это же время анонсировавшая процессоры Intel Pentium D и Intel Extreme Edition. Правда, анонс аналогичной линейки процессоров Athlon64 X2 производства AMD запоздал всего лишь на считанные дни.

Двухъядерные процессоры Intel

Первые двухъядерные процессоры Intel Pentium D семейства 8хх были основаны на ядре Smithfield, которое является ничем иным, как двумя ядрами Prescott, объединенными на одном полупроводниковом кристалле. Там же размещается и арбитр, который следит за состоянием системной шины и помогает разделять доступ к ней между ядрами, каждое из которых имеет собственную кэш-память второго уровня объемом по 1 Мбайт. Размер такого кристалла, выполненного по 90-нм техпроцессу, достиг 206 кв. мм, а количество транзисторов приближается к 230 миллионам.

Для продвинутых пользователей и энтузиастов компания Intel предлагает процессоры Pentium Extreme Edition, отличающиеся от Pentium D поддержкой технологии HyperThreading (и разблокированным множителем), благодаря чему они определяются операционной системой как четыре логических процессора. Все остальные функции и технологии обоих процессоров полностью одинаковы. Среди них можно выделить поддержку 64-битного набора команд EM64T (x86-64), технологии энергосбережения EIST (Enhanced Intel SpeedStep), C1E (Enhanced Halt State) и TM2 (Thermal Monitor 2), а также функцию защиты информации NX-bit. Таким образом, немалая ценовая разница между процессорами Pentium D и Pentium EE является по большей части искусственной.

Что касается совместимости, то процессоры на ядре Smithfield потенциально могут быть установлены в любую LGA775 материнскую плату, лишь бы она соответствовала требованиям Intel к модулю питания платы.

Но первый блин, как обычно, вышел комом - во многих приложениях (большинство из которых не оптимизированы под многопоточность) двухъядерные процессоры Pentium D не только не превосходили одноядерные Prescott, работающие на той же тактовой частоте, но иногда и проигрывали им. Очевидно, проблема кроется во взаимодействии ядер через процессорную шину Quad Pumped Bus (при разработке ядра Prescott не было предусмотрено масштабирование его производительности путем увеличения количества ядер).

Устранить недостатки первого поколения двухъядерных процессоров Intel были призваны процессоры на 65-нм ядре Presler (два отдельные ядра Cedar Mill, размещенные на одной подложке), появившиеся в самом начале нынешнего года. Более "тонкий" техпроцесс позволил уменьшить площадь ядер и их энергопотребление, а также повысить тактовые частоты. Двухъядерные процессоры на ядре Presler получили наименование Pentium D с индексами 9хх. Если сравнивать процессоры Pentium D 800-й и 900-й серий, то кроме ощутимого снижения энергопотребления новые процессоры получили удвоение кэш-памяти второго уровня (по 2 Мбайт на ядро вместо 1 Мбайт) и поддержку перспективной технологии виртуализации Vanderpool (Intel Virtualization Technology). Кроме того, был выпущен процессор Pentium Extreme Edition 955 с включенной технологией HyperThreading и работающий на частоте системной шины 1066 МГц.

Официально процессоры на ядре Presler с частотой шины 1066 МГц совместимы только с материнскими платами на чипсетах серии i965 и i975X, тогда как 800-мегагерцевые Pentium D в большинстве случаев заработают на всех системных платах, поддерживающих эту шину. Но, опять же, встает вопрос о питании этих процессоров: термопакет Pentium EE и Pentium D, за исключением младшей модели, составляет 130 Вт, что почти на треть больше, чем у Pentium 4. Согласно заявлениям самой Intel, стабильная работа двухъядерной системы возможна лишь при использовании блоков питания мощностью не менее 400 Вт.

Наиболее эффективными современными десктопными двухъядерными процессорами Intel, без сомнения, являются Intel Core 2 Duo и Core 2 eXtreme (ядро Conroe). Их архитектура развивает базовые принципы архитектуры семейства P6, тем не менее, количество принципиальных нововведений столь велико, что впору говорить о новом, 8-м поколении процессорной архитектуры (P8) компании Intel. Несмотря на более низкую тактовую частоту, они заметно превосходят процессоры семейства Р7 (NetBurst) по производительности в подавляющем большинстве применений - в первую очередь за счет увеличения числа операций, выполняемых в каждом такте, а также за счет снижения потерь, обусловленных большой длиной конвейера P7.

Десктопные процессоры линейки Core 2 Duo выпускаются в нескольких вариантах:
- серия E4xxx - FSB 800 МГц, общий для обоих ядер L2-кэш 2 Мбайт;
- серия E6ххх - FSB 1066 МГц, размер кэша 2 или 4 Мбайт;
- серия X6ххх (eXtreme Edition) - FSB 1066 МГц, размер кэша 4 Мбайт.

Буквенный шифр "E" обозначает диапазон энергопотребления от 55 до 75 ватт, "X" - выше 75 ватт. Core 2 eXtreme отличается от Core 2 Duo лишь только повышенной тактовой частотой.

Все процессоры Conroe используют хорошо отработанные процессорную шину Quad Pumped Bus и разъем LGA775. Что, однако, совсем не означает совместимости со старыми материнскими платами. Помимо поддержки тактовой частоты 1067 МГц, материнские платы для новых процессоров должны содержать новый модуль регулирования напряжения (VRM 11). Этим требованиям соответствуют в основном обновленные версии материнских плат, выполненных на базе чипсетов Intel 975 и 965 серий, а также NVIDIA nForce 5xx Intel Edition и ATI Xpress 3200 Intel Edition.

В ближайшие два года процессоры Intel всех классов (мобильные, десктопные и серверные) будут базироваться на архитектуре Intel Core, а основное развитие будет идти в направлении увеличения числа ядер на кристалле и усовершенствования их внешних интерфейсов. В частности, для рынка настольных ПК таким процессором станет Kentsfield - первый четырехъядерный процессор Intel для сегмента высокопроизводительных настольных ПК.

Двухъядерные процессоры AMD

В линейке двухъядерных процессоров AMD Athlon 64 X2 используются два ядра (Toledo и Manchester) внутри одного кристалла, произведенные по 90-нм техпроцессу с использованием технологии SOI. Каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины HyperTransport у них общие. Различия между ядрами - в размере кэша второго уровня: у Toledo кэш L2 имеет объем 1 Мбайт на каждое ядро, а у Manchester этот показатель вдвое меньше (по 512 Кбайт). Все процессоры имеют кэш-память первого уровня 128 Кбайт, их максимальное тепловыделение не превышает 110 Вт. Ядро Toledo состоит примерно из 233,2 млн. транзисторов и имеет площадь около 199 кв. мм. Площадь ядра Manchester заметно меньше - 147 кв. мм., количество транзисторов составляет 157 млн.

Двухъядерные процессоры Athlon64 X2 унаследовали от Athlon64 поддержку технологии энергосбережения Cool`n`Quiet, набор 64-битных расширений AMD64, SSE - SSE3, функцию защиты информации NX-bit.

В отличие от двухъядерных процессоров Intel, работающих только с памятью DDR2, Athlon64 Х2 способны работать как с памятью типа DDR400 (Socket 939), обеспечивающей предельную пропускную способность в 6,4 Гбайт/с, так и с DDR2-800 (Socket AM2), пиковая пропускная способность которой составляет 12,8 Гбайт/с.

На всех достаточно современных материнских платах процессоры Athlon64 X2 работают без каких-либо проблем - в отличие от Intel Pentium D они не предъявляют каких-либо специфических требований к дизайну модуля питания материнской платы.

До самого последнего времени наиболее производительными среди десктопных процессоров считались AMD Athlon64 X2, однако с выходом Intel Core 2 Duo ситуация в корне изменилась - последние стали безусловными лидерами, особенно в игровых и мультимедийных применениях. Кроме того, новые процессоры Intel имеют пониженное энергопотребление и гораздо более эффективные механизмы управления питанием.

Такое положение дел компанию AMD не устроило, и в качестве ответного хода она анонсировала выпуск в середине 2007 года нового 4-ядерного процессора с улучшенной микроархитектурой, известного под названием K8L. Все его ядра будут иметь раздельные L2-кэши по 512 Кбайт и один общий кэш 3-го уровня размером 2 Мбайта (в последующих версиях процессора L3-кэш может быть увеличен). Более подробно перспективная архитектура AMD K8L будет рассмотрена в одном из ближайших номеров нашего журнала.

Одно ядро или два?

Даже беглый взгляд на сегодняшнее состояние рынка десктопных процессоров свидетельствует о том, что эпоха одноядерных процессоров постепенно уходит в прошлое - оба ведущих мировых производителя перешли на выпуск в основном мультиядерных процессоров. Однако программное обеспечение, как это не раз случалось и раньше, пока что отстает от уровня развития "железа". Ведь для того чтобы полностью задействовать возможности несколько процессорных ядер, программное обеспечение должно уметь "разбиваться" на несколько параллельных потоков, обрабатываемых одновременно. Только при таком подходе появляется возможность распределить нагрузки по всем доступным вычислительным ядрам, снижая время вычислений сильнее, чем это можно было сделать путем повышения тактовой частоты. Тогда как подавляющее большинство современных программ не способны использовать все возможности, предоставляемые двухъядерными или, тем более, многоядерными процессорами.

Какие же типы пользовательских приложений наиболее эффективно поддаются распараллеливанию, то есть без особой переработки кода программ позволяют выделить несколько задач (программных потоков), способных исполняться параллельно и, таким образом, загрузить работой сразу несколько процессорных ядер? Ведь только такие приложения обеспечивают сколь-нибудь заметное увеличение производительности от внедрения многоядерных процессоров.

Наибольший выигрыш от мультипроцессорности получают приложения, изначально допускающие естественную паралеллизацию вычислений с разделением данных, например, пакеты реалистичного компьютерного рендеринга - 3DMax и ему подобные. Также можно ожидать хорошего прироста производительности от многопроцессорности в приложениях по кодированию мультимедийных файлов (аудио и видео) из одного формата в другой. Кроме того, хорошо поддаются распараллеливанию задачи редактирования двумерных изображений в графических редакторах вроде популярного Photoshop"а.

Недаром приложения всех перечисленных выше категорий широко используются в тестах, когда хотят показать преимущества виртуальной многопроцессорности Hyper-Threading. А уж о реальной многопроцессорности и говорить нечего.

А вот в современных трехмерных игровых приложениях какого-либо серьезного прироста скорости от нескольких процессоров ожидать не следует. Почему? Потому, что типичную компьютерную игру так просто не распараллелить на два или более процессов. Поэтому второй логический процессор в лучшем случае будет заниматься выполнением лишь вспомогательных задач, что не даст практически никакого прироста производительности. А разработка многопоточной версии игры с самого начала достаточно сложна и требует немалых трудозатрат - порой гораздо больших, чем для создания однопоточной версии. Трудозатраты эти, кстати, могут еще и не окупиться с экономической точки зрения. Ведь производители компьютерных игр традиционно ориентируются на наиболее массовую часть пользователей и начинают использовать новые возможности компьютерного "железа" только в случае его широкой распространенности. Это хорошо заметно на примере использования разработчиками игр возможностей видеокарт. Например, после того как появилась новые видеочипы с поддержкой шейдерных технологий, разработчики игр еще долгое время игнорировали их, ориентируясь на возможности урезанных массовых решений. Так что даже продвинутые игроки, купившие самые "навороченные" видеокарты тех лет, так и не дождались нормальных игр, использующих все их возможности. Примерно аналогичная ситуация с двухъядерными процессорами наблюдается сегодня. Сегодня не так много игр, толком задействующих даже технологию HyperThreading, несмотря на то, что уже не один год вовсю выпускаются массовые процессоры с ее поддержкой.

В офисных приложениях ситуация не столь однозначная. Прежде всего, программы такого класса редко работают в одиночку - гораздо чаще встречается ситуация, когда на компьютере запущено нескольких работающих параллельно офисных приложений. Например, пользователь работает с текстовым редактором, и одновременно происходит загрузка web-сайта в браузер, а также в фоновом режиме осуществляется сканирование на вирусы. Очевидно, что несколько работающих приложений позволяют без особого труда задействовать несколько процессоров и получить прирост производительности. Тем более что все версии Windows XP, включая Home Edition (которой изначально было отказано в поддержке мультиядерных процессоров), уже сейчас способны использовать преимущества двухъядерных процессоров, распределяя программные потоки между ними. Обеспечивая тем самым высокую эффективность исполнения многочисленных фоновых программ.

Таким образом, можно ожидать некоторого эффекта даже от неоптимизированных офисных приложений, если они запускаются параллельно, но вот стоит ли такой прирост производительности существенного увеличения стоимости двухъядерного процессора, понять сложно. Кроме того, определенным недостатком двухъядерных процессоров (особенно это касается процессоров Intel Pentium D) является то, что приложения, производительность которых ограничена не вычислительной способностью самого процессора, а скоростью доступа к памяти, могут не так сильно выиграть от наличия нескольких ядер.

Заключение

Несомненно, что будущее определенно за многоядерными процессорами, однако сегодня, когда большая часть существующего программного обеспечения не оптимизирована под новые процессоры, достоинства их не столь очевидны, как пытаются показать производители в своих рекламных материалах. Да, чуть позже, когда произойдет резкое увеличение количества приложений, поддерживающих многоядерные процессоры (в первую очередь это касается 3D-игр, в которых CPU нового поколения помогут существенно разгрузить графическую систему), приобретение их будет целесообразно, но сейчас... Давно известно, что покупка процессоров "на вырост" - далеко не самое эффективное вложение средств.

С другой стороны, прогресс стремителен, а для нормального человека ежегодная смена компьютера - это, пожалуй, перебор. Таким образом, всем обладателям достаточно современных систем на базе одноядерных процессоров в ближайшее время волноваться особо не стоит - ваши системы еще какое-то время будут "на уровне", тогда как тем, кто собирается приобрести новый компьютер, мы бы все-таки порекомендовали обратить свое внимание на относительно недорогие младшие модели двухъядерных процессоров.